Explore publications related to RaDIATE collaboration research.
(Some publications may require a subscription.)
Release date | Title | Authors | Reference | Keywords |
---|---|---|---|---|
2024 | Radiation damage study of POCO ZXF-5Q graphite for neutrino production targets using 4.5 MeV helium ions | Abraham Burleigh, Kavin Ammigan, Sujit Bidhar, Frederique Pellemoine, Ovidiu Toader, Thomas Kubley, Kai Sun , Jeff Terry. | To be published | |
2024 | Measurements of displacement cross sections of metals for 120-GeV proton beam irradiation | Yosuke Iwamoto, Hiroki Matsuda; Shin-Ichiro Meigo; Katsuya Yonehara; Frederique Pellemoine; Zunping Liu; Kevin Lynch; Makoto Yoshida; Atsushi Yabuuchi; Toshimasa Yoshiie; Shintaro Hashimoto | To be published | |
2024 | Microstructural Evolution of Ion Irradiated Commercially Pure Titanium | A. Amroussia, C.J. Boehlert, F. Pellemoine, D. Grummon, W. Mittig, T.R. Bieler, M. Li, W.Y. Chen | JNM Volume 599, October 2024, 155105 | titanium irradiation, ionization, microstructure, dislocations |
2023 | Porosity evolution in proton irradiated microfine-grained POCO graphite | Ming Jiang, Kavion Ammigan, George Lolov, Frederique Pellemoine, Dong Liu | JNM Volume 587, 15 December 2023, 154732 | Proton irradiation, POCO graphite, Deep learning image segmentation, FIB-SEM tomography, Porosity |
2023 | High Power Targetry R&D and support for future generation accelerator | Frederique Pellemoine, Kavin Ammigan, Charlotte Barbier, Katsuya Yonehara | JINST 18 T07006 | Accelerator modelling and simulations, Accelerator Subsystems and Technologies, Radiation damage evaluation methods, Targets |
2023 | A novel method for quantifying irradiation damage in nuclear graphite using Raman spectroscopy | Ming Jiang, Kavin Ammigan, George Lolov, Frederique Pellemoine, Dong Liu | Carbon Volume 213 September 2023, 118181 | Micro-Raman spectroscopy, Irradiation damage, Proton irradiation, Nuclear graphite, POCO graphite |
2023 | Insights into radiation resistance of titanium alloys from displacement cascade simulations | Ankit Roy, David J. Senor, Danny J. Edwards, Andrew M. Casella, Ram Devanathan | JNM Volume 586, 1 December 2023, 154695 | Ti-15V-3Cr-3Sn-3Al, Ti-6Al-4V, α and β-phases, Molecular dynamics, PKA cascade simulations, Vacancy and interstitial clustering, Displacement threshold energies |
2023 | Atomistic simulations of He bubbles in Beryllium | Jianqi Xi, Yegi Shi, Vitaly Pronskikh, Frederique Pellemoine, Dane Morgan, Izabela Szlufarska | JNM Volume 576. April 2023, 154249 | He bubble, Beryllium, Stability, Diffusivity |
2022 | Irradiation Facilities and Irradiation Methods for High Power Target | F. Pellemoine, C. Barbier, Y. Sun, K. Ammigan, S. Bidhar, B. Zwaska, D. McClintock, S. Taller, D. Winder, C.S. Cutler, D. Kim, Y. Chiu, M. Freer, C. Wheldon, A. Gottberg, F. Boix Pamies, M. Calviani, N. Charitonidis, R. Garcia Alia, F. Ravotti, S. Danzeca, A.P. Bernardes, N. Moncoffre, S. Meigo, T. Ishida, Y. Dai, A. Couet, K. Kriewaldt, M. Moorhead, G.S. Was, O. Toader, F. Naab, P. Wang, D. Woodley, E. Getto, S. Raiman, C. Grygiel, I. Monnet, A. Alessi, D. Senor, A.M. Casella | Snowmass 2021 Contribution | Irradiation stations, Post Irradiation Examination |
2022 | Modeling Needs for High Power Target | Charlotte Barbier, Sujit Bidhar, Marco Calviani, Jeff Dooling, Jian Gao, Aaron Jacques, Wei Lu, Roberto Li Voti, Frederique Pellemoine, Justin Mach, David Senor, Fernando Sordo, Izabela Szlufarska, Joseph Tipton, Dan Wilcox, Drew Winder | Snowmass 2021 Contribution | high-power target, modeling |
2022 | Multiphysics Simulation of the Thermal Response of a Nanofibrous Target in a High-Intensity Beam | W. J. Asztalos, Y. Torun, Bidhar, F. Pellemoine, P. Rath | NAPAC Proceeding 2022, MOPA63 | High-power target, ceramic nanofiber, multiphysics simulation |
2021 | Production and qualification of an electrospun ceramic nanofiber material as a candidate future high-power target | Sujit Bidhar, Valerie Goss, Wei-Ying Chen, Andrei Stanishevsky, Meimei Li, Slava Kuksenko, Marco Calviani, and Robert Zwaska | Phys. Rev. Accel. Beams 24, 123001 | high-power target, ceramic nanofiber, thicker mat, nano-indentation, ion irradiation, AFM |
2021 | Radiation-induced hardening of beryllium during low temperature He implantation | V. Kuksenko, A. Lunev, E. Darnbrough, C. Densham, P. Hurh, S. Roberts | JNM Volume 555, November 2021, 153130 | beryllium, helium implantation, irradiation induced hardening, anisotropy, TEM, dislocation loops |
2021 | Multiple length-scale microstructural characterisation of four grades of fine-grained graphite | M. Jiang, A. El-Turke, G. Lolov, K. Ammigan, P. Hurh, D. Liu | JNM Volume 550, July 2021, 152876 | nuclear graphite, multiple length-scale porosity, X-ray micro-computed tomography, focused ion-beam tomography, micro-raman spectroscopy, proton beamline target |
2021 | First observation of spalling in tantalum at high temperatures induced by high-energy proton beam impacts | C. Torregrosa, N. Solieri, E. Fornasiere, J. Busom, M. Calviani, J. Canhoto, A. Perillo-Marcone, P. Spatig | European Journal of Mechanics- A solids Volume 85, Jan-Feb 2021, 104149 | spall, tantalum, high temperature, proton beams, dynamic loading, radial mode, hydrocodes |
2021 | Irradiation damages of structural materials under different irradiation environments | E. Wakai, S. Takaya, Y. Matsui, Y. Nagae, S. Kato, T. Suzudo, M. Yamaguchi, K. Aoto, S.Nogami, A. Hasegawa, H. Abe, K. Sato, T. Ishida, S. Makimura, P. G. Hurh, K. Ammigan, D. J. Senor, A. M. Casella, D. J. Edwards | JNM Volume 543, January 2021, 152503 | helium, dpa, irradiation hardening, irradiation creep, swelling, 316FR, HCM12A, 304 steel |
2020 | Low-temperature proton irradiation damage of isotropic nuclear grade IG-430 graphite | N.Simos, P.Hurh, N.Mokhov, M.Snead, M.Topsakal, M.Palmer, S.Ghose, H.Zhong, Z.Kotsina, D.J.Sprouster | JNM Volume 542, 15 December 2020, 152438 | irradiation damage, post-irradiation annealing, very high-temperature reactor, graphite IG-430 |
2020 | Tensile behavior of dual-phase titanium alloys under high-intensity proton beam exposure: radiation-induced omega phase transformation in Ti-6Al-4V | T. Ishida, E. Wakai, S. Makimura, A. M. Casella, D. J. Edwards, R. Prabhakaran, D. J. Senor, K. Ammigan, S. Bidhar, P. G. Hurh, F. Pellemoine, C. J. Densham, M. D. Fitton, J. M. Bennett, D. Kim, N. Simos, M. Hagiwara, N. Kawamura, S. Meigo, K. Yonehara, On behalf of the RaDIATE COLLABORATION | JNM Volume 541, December 2020, 152413 | titanium alloy, omega phase, radiation damage, accelerator target, beam window |
2020 | Why Does Titanium Alloy Beam Window Become Brittle After Proton Beam Exposure ? ~ Research and Development on the Accelerator Target and Beam Window Materials | RaDIATE International Collaboration, J-PARC Center, High Energy Accelerator Research Organization (KEK), Japan Atomic Energy Agency (JAEA), Fermi National Accelerator Laboratory (FNAL), Pacific Northwest National Laboratory (PNNL), Brookhaven National Laboratory (BNL), Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory (RAL) | KEK Press Release | titanium alloy, omega phase, radiation damage, accelerator target, beam window |
2020 | Why Does Titanium Alloy Beam Window Become Brittle After Proton Beam Exposure? | RaDIATE International Collaboration, J-PARC Center, High Energy Accelerator Research Organization (KEK), Japan Atomic Energy Agency (JAEA), Fermi National Accelerator Laboratory (FNAL), Pacific Northwest National Laboratory (PNNL), Brookhaven National Laboratory (BNL), Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory (RAL) | J-PARC Press Release | titanium alloy, omega phase, radiation damage, accelerator target, beam window |
2020 | Estimation of reliable displacements-per-atom based on athermal-recombination-corrected model in radiation environments at nuclear fission, fusion, and accelerator facilities | Y. Iwamoto, S. Meigo, S. Hashimoto | JNM Volume 538, September 2020, 152261 | arc-dpa, NRT-dpa, primary radiation damage, nuclear interaction product, high energy |
2020 | Measurement of displacement cross-sections of copper and iron for proton with kinetic energies in the range 0.4 – 3 GeV | H. Matsuda, S. Meigo, Y. Iwamoto, M. Yoshida, S. Hasegawa, F. Maekawa, H. Iwamoto, T. Nakamoto, S. Makimura | Journal of Nuclear Science and Technology, Volume 57, issue 10 (2020) 1141-1151 | accelerator, accelerator-driven system, proton, radiation damage, radiation dose, iron, PHITS, target |
2020 | Measurement of Displacement Cross Section of Structural Materials Utilized in the Proton Accelerator Facilities with the Kinematic Energy above 400 MeV | S. Meigo, H. Matsuda, Y. Iwamoto, M. Yoshida, S. Hasegawa, F. Maekawa, H. Iwamoto, T. Nakamoto, T. Ishida, and S. Makimura | JPS Conf. Proc. 28, 061004 (2020) | displacement cross section, DPA, proton irradiation, copper |
2020 | Failure investigation of nuclear grade POCO graphite target in high-energy neutrino physics through numerical simulation | S. Bidhar, N. Simos, D. Senor, P. Hurh | Nuclear Materials and Energy 24 (2020) 100761 | neutrino physics, isotropic graphite, radiation damage, annealing, X-ray diffraction, finite element analysis, empirical formula, thermal stress wave |
2020 | Radiation Damage Studies on Titanium Alloys as High-Intensity Proton Accelerator Beam Window Materials | T. Ishida, E. Wakai, S. Makimura, P. Hurh, K. Ammigan, A. M. Casella, D. J. Edwards, D. J. Senor, C. J. Densham, M. D. Fitton, J. M. Bennett, D. Kim, N. Simos, M. Calviani, and C. Torregrosa Martin, On behalf of the RaDIATE COLLABORATION | JPS Conf. Proc. 28, 041001 (2020) | titanium alloy, beam window, proton beam, radiation damage |
2020 | Tungsten alloy development as advanced target material for high-power proton accelerator | S. Makimura, H. Kirishita, K. Niikura, H.-C. Jung, M. Onoi, Y. Nagasawa, T. Ishida, M. Calviani, C. Torregrosa and J. Descarrega | JPS Conf. Proc. 28, 031002 (2020) | proton accelerator target, tungsten, recrystallization embrittlement, irradiation embrittlement |
2019 | Thermal shock experiment of beryllium exposed to intense high-energy proton beam pulses | K. Ammigan, S. Bidhar, P. Hurh, R. Zwaska, M. Butcher, M. Calviani, M. Guinchard, R. Losito, V. Kuksenko, S. Roberts, A. Atherton, G. Burton, O. Caretta, T. Davenne, C. Densham, M. Fitton, P. Loveridge, and J. O’Dell | Phys. Rev. Accel. Beams 22, 044501 – 4 April 2019 | beryllium, thermal shock, high-energy proton, simulation |
2019 | 120 GeV neutrino physics graphite target damage assessment using electron microscopy and high-energy x-ray diffraction | N. Simos, P. Hurh, E. Dooryhee, L. Snead, D. Sprouster, Z. Zhong, H. Zhong, S. Ghose, Z. Kotsina, K. Ammigan, J. Hylen, V. Papadimitriou, R. Zwaska, D. Senor, A. Casella, and D.J. Edwards | Phys. Rev. Accel. Beams 22, 041001, 8 April 2019 | high-energy proton beam, radiation damage, graphite target, electron microscopy, high-energy X-ray diffraction |
2019 | Experiment exposing refractory metals to impacts of 440 GeV/c proton beams for the future design of the CERN antiproton production target: Experiment design and online results | C. Torregrosa, A. Perillo-Marcone, M. Calviani, L. Gentini, M. Butcher, J-L. Munoz-Cobo | Phys. Rev. Accel. Beams 22, 013401 – 7 January 2019 | refractory metals, high-energy proton irradiation, thermal shock, dynamic response, iridium, tungsten, tantalum, TZM, molybdenum |
2018 | Scaled prototype of a tantalum target embedded in expanded graphite for antiproton production: Design, manufacturing, and testing under proton beam impacts | C. Torregrosa, M. Calviani, A. Perillo-Marcone, R. Ferriere, N. Solieri, M. Butcher, L-M Grec, J. Canhoto | Phys. Rev. Accel. Beams 21, 073001 – 24 July 2018 | graphite target, thermal shock, dynamic response |
2018 | Study of the radiation damage effect on Titanium metastable beta alloy by high intensity proton beam | T. Ishida, E. Wakai, M. Hagiwara, S. Makimura, M. Tada,D. M. Asner, A. Casella, A. Devaraj, D. Edwards, R. Prabhakaran, D. Senor, M. Hartz, S. Bhadra, A. Fiorentini, M. Cadabeschi, J. Martin, A. Konaka, A. Marino, A. Atherthon, C.J. Densham, M. Fitton, K. Ammigan, P. Hurh | Nuclear Materials and Energy, Volume 15, May 2018, Pages 169-174 | titanium alloy, proton beam, radiation damage, target, beam window |
2017 | Irradiation effects in beryllium exposed to high energy protons of the NuMI neutrino source | V. Kuksenko, K. Ammigan, B. Hartsell, C. Densham, P. Hurh, S. Roberts | JNM Volume 490, July 2017, Pages 260-271 | beryllium, proton irradiation, neutrino targets, EBSD, EDS, atom probe tomography, transmutation elements, precipitation, segregation |
2017 | Proton irradiated graphite grades for a long baseline neutrino facility experiment | N. Simos, P. Nocera, Z. Zhong, R. Zwaska, N. Mokhov, J. Misek, K. Ammigan, P. Hurh, and Z. Kotsina | Phys. Rev. Accel. Beams 20, 071002 – 24 July 2017 | graphite, high-energy proton irradiation, physical property change, radiation damage, annealing, X-ray diffraction, X-ray tomography, neutron tomography |
2016 | Radiation damage and thermal shock response of carbon-fiber-reinforced materials to intense high-energy proton beams | N. Simos, Z. Zhong, S. Ghose, H.G. Kirk, L-P Trung, K.T. McDonald, Z. Kotsina, P. Nocera, R. Assmann, S. Redaelli, A. Bertarelli, E. Quaranta, A. Rossi, R. Zwaska, K. Ammigan, P. Hurh, and N. Mokhov | Phys. Rev. Accel. Beams 19, 111002 – 16 November 2016 | high-energy proton beam, radiation damage, thermal shock, carbon fiber composite |
2016 | The radiation damage in accelerator target environments (RaDIATE) collaboration R&D program – status and future activities | P. G. Hurh | Proceedings of the North American Particle Accelerator Conference, MOPOB23, October 2016 | RaDIATE collaboration, proton irradiation, graphite, beryllium |
2015 | Study on structural recovery of graphite irradiated with swift heavy ions at high temperature | F. Pellemoine, M. Avilov, M. Bender, R.C. Ewing, S. Fernandes, M. Lang, W.X. Li, W. Mittig, M. Schein, D. Severin, M. Tomut, C. Trautmann, F.X. Zhang | NIMB Volume 365,Part B, 15 December 2015, Pages 522-524 | high-power graphite target, swift heavy ion, radiation damage, structural recovery |
2015 | Swift heavy ion irradiation damage in Ti-6Al-4V and Ti-6Al-4V-1B: Study of the microstructure and mechanical properties | A. Amroussia, M. Avilov, C. J. Boehlert, F. Durantel, C. Grygiel, W. Mittig, I. Monnet, F. Pellemoine | NIMB Volume 365, December 2015, Pages 515-521 | swift heavy ion (SHI) irradiation damage, microstructure, mechanical properties, titanium alloys |
2013 | In-Situ Electric Resistance Measurements and Annealing Effects of Graphite Exposed to Swift Heavy Ions | S. Fernandes, F. Pellemoine, M. Tomut, M. Avilov, M. Bender, M. Boulesteix, M. Krause, W. Mittig, M. Schein, D. Severin, C. Trautmann | NIMB Volume 314, 1 November 2013, Pages 125-129 | high-power graphite target, swift heavy ion, radiation damage, electrical resistance |